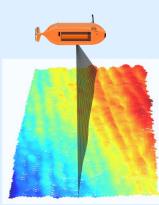


Score-Based Multibeam Point Cloud Denoising

Li Ling¹, Yiping Xie¹, Nils Bore², John Folkesson¹

1 Division of Robotics, Perception and Learning (RPL), KTH Royal Institute of Technology, Sweden 2 Ocean Infinity, Sweden

OCEAN INFINITY



Introduction

Why a learning-based multibeam denoising algorithm?

- Exponential growth in openly available MBES data [1]:
 - Cheaper sensors
 - Global initiatives to map the ocean, e.g. GEBCO Seabed 2030 [2]
- Raw MBES needs to be processed:
 - 1 25% outliers [1]
 - Existing data processing procedure requires data experts
- Q: Can we develop a semi-automatic MBES cleaning algorithm that is requires less manual intervention and is more repeatable and scalable?

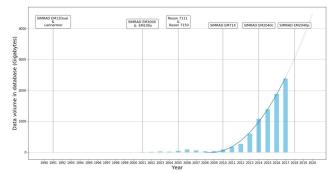
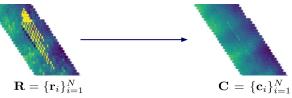


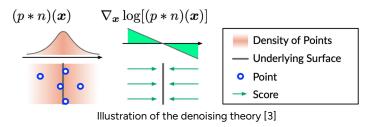
Figure 1. Volume of post-processed bathymetric data at Shom between 1991 and 2017. The last three years are missing due to the time required to integrate MBES data in the bathymetric database. [1]

Method Problem Formulation

• Goal: given the noisy *raw* MBES point cloud **R**, recover the *clean* correspondence **C**

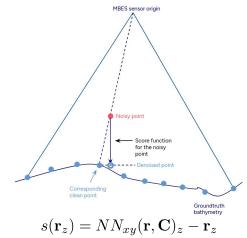


- Assumption for score-based methods [3]:
 - **C** is sampled from an underlying distribution *p* (true seafloor)
 - **R** is sampled from p convolved with a noise distribution n + additional outliers o
 - Without the outliers, the *mode* of (p*n) = **C** -> Gradient / score of (p*n) can be used to move the points



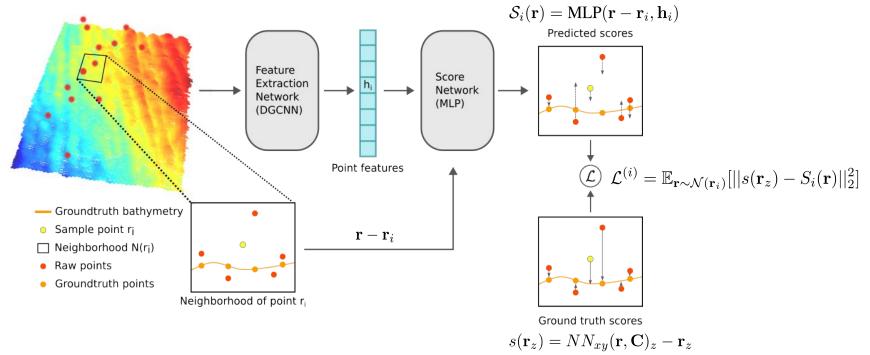
Method Problem Formulation - *score* for MBES Point Cloud

- Groundtruth score:
 - Assumptions /simplifications:
 - X positions (along-track) are fixed (i.e. each MBES ping forms a plane with the seafloor)
 - Y positions (across-track) can be moved according to MBES geometry given Z
 - Intuition: 1D scalar (z-component) from the noisy point *r* to its closest corresponding clean point *c*



Method

Supervised Learning for the Local Score Functions

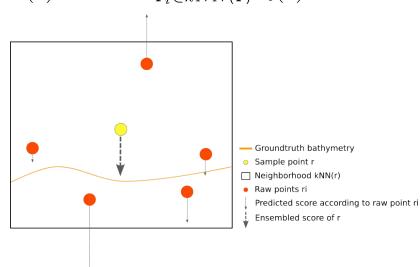


Method

E

Score-Based Denoising for MBES Point Clouds

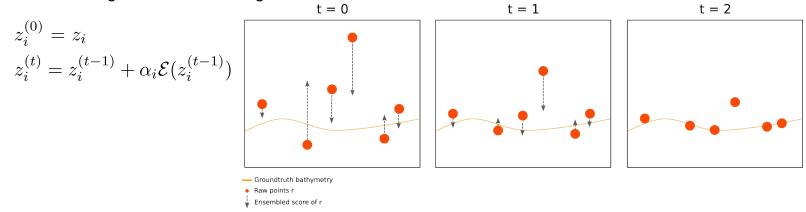
- After training, the score network can predict the score of any points
- At inference time, the final score of a raw point **r**:



$$(\mathbf{r}) = \text{median}_{\mathbf{r}_i \in kNN(\mathbf{r})} S_i(\mathbf{r})$$

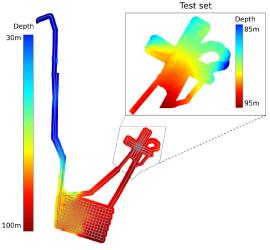
Method Score-Based Denoising for MBES Point Clouds

- Outlier detection:
 - Interquartile range (IQR) from descriptive statistics
 - Inliers = [Q1 i*IQR, Q3 + i*IQR]
 - Q1 = 25 percentile, Q3 = 75 percentile, IQR = Q3 Q1, i = 5
- Denoising:
 - Iterative gradient ascend using the score



- Dataset construction pipeline:
 - a. Manual cleaning of a MBES dataset collected by Ran using Kongsberg EM2040
 - b. Mesh construction using EIVA NaviModel
 - c. Draping pings onto mesh to obtain groundtruth clean point set using AuvLib
 - d. Dividing data into 32-ping patches for training and evaluation
- Dataset details:

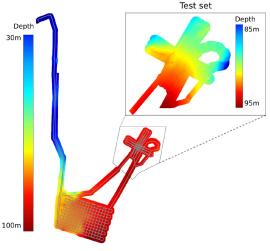
Details	Specifications
Vehicle speed	2 m/s
Vehicle altitude	$\sim 20~{ m m}$
Survey duration	$\sim 4~{ m h}$
Sonar frequency	400 kHz
Ping rate	2.5 Hz (~ 0.4 s/ping)
Beam forming	400 beams across 120°
Total number of points	86,710,800 points (217k pings)
Total number of outliers	3,410,764 points (3.93% of all points)
Number of test points	25,518,400 points (64k pings)
Number of test outliers	1,880,800 points (7.37% of test points)



Clean bathymetry + AUV trajectory

- Dataset construction pipeline:
 - a. Manual cleaning of a MBES dataset collected by Ran using Kongsberg EM2040
 - b. Mesh construction using EIVA NaviModel
 - c. Draping pings onto mesh to obtain groundtruth clean point set using AuvLib
 - d. Dividing data into 32-ping patches for training and evaluation
- Dataset details:

Details	Specifications
Vehicle speed	2 m/s
Vehicle altitude	$\sim 20~{ m m}$
Survey duration	$\sim 4~{ m h}$
Sonar frequency	400 kHz
Ping rate	2.5 Hz (~ 0.4 s/ping)
Beam forming	400 beams across 120°
Total number of points	86,710,800 points (217k pings)
Total number of outliers	3,410,764 points (3.93% of all points)
Number of test points	25,518,400 points (64k pings)
Number of test outliers	1,880,800 points (7.37% of test points)



Clean bathymetry + AUV trajectory

Results Outlier Detection

- Baselines:
 - Two methods from Open3D library:
 - Statistical outlier removal
 - Radius outlier removal

- -i0 -5 0 5 10 Groundtruth Z difference (meters)
- Both baselines are tuned on the *test set* to ensure strong performance

1.0

0.8

Density 0.6

0.2

0.0

-15

• Results:

TABLE II: Outlier rejection results. The best and second best method per metric are highlighted in red and magenta, respectively.

	Method	Accuracy	Precision	Recall	F1-score
	Radius Statistical	98.49% 98.17%	98.79% 90.76%	80.61% 83.70%	0.8878 0.8709
Same ScoreNet with different number of neighbors in the final score ensemble	Score (64) Score (128) Score (256)	99.22% 99.46% 99.50%	99.67% 99.72% 99.31%	89.78% 92.91% 93.91%	0.9447 0.9620 0.9653

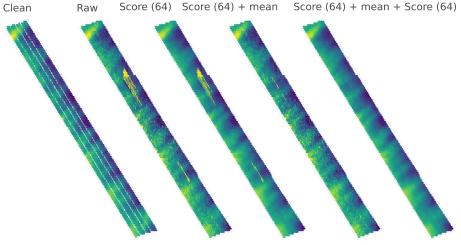
train test

Results Denoising

- Baselines:
 - Radius / statistical outlier removal + 2 interpolation techniques:
 - Mean interpolation using 16 points around the identified outlier
 - Ordinary Kriging implemented in PyKrige package
- Results:

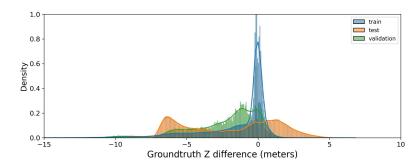
TABLE III: Denoising results. The best and second best methods per metric are highlighted in red and magenta, respectively.

	Method	CD	MAEz	RMSE ₂
	Raw	1.1058	0.2418	0.9136
	Radius + mean	0.07983	0.02788	0.06153
	Statistical + mean	0.08127	0.02719	0.06242
	Radius + Ordinary Kriging	0.08173	0.02838	0.06292
	Statistical + Ordinary Kriging	0.08173	0.02774	0.06394
Pure gradient ascend	Score (64)	0.2773	0.06483	0.3748
	Score (128)	0.2037	0.05478	0.2806
	Score (256)	0.1201	0.04405	0.1714
Outlier detection w/	Score (64) + mean	0.2450	0.05471	0.3368
Scores + denoising	Score (128) + mean	0.1640	0.03994	0.2301
w/ mean interp.	Score (256) + mean	0.08348	0.02397	0.05759
Score (knn) + mean	Score (64) + mean + Score (64)	0.08790	0.02327	0.1043
+ gradient ascend	Score (128) + mean + Score (128)	0.08416	0.02208	0.09158
denoising using Scores	Score (256) + mean + Score (256)	0.07907	0.02049	0.07416



Results Denoising

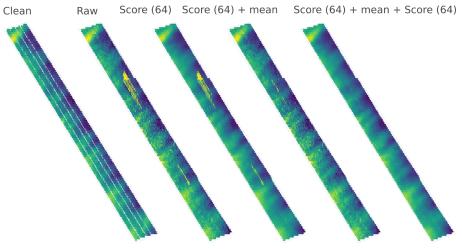
• Baselines:



- Radius / statistical outlier removal + 2 interpolation techniques:
 - Mean interpolation using 16 points around the identified outlier
 - Ordinary Kriging implemented in PyKrige package
- Results:

TABLE III: Denoising results. The best and second best methods per metric are highlighted in red and magenta, respectively.

	Method	CD	MAEz	RMSE ₂
	Raw	1.1058	0.2418	0.9136
	Radius + mean	0.07983	0.02788	0.06153
	Statistical + mean	0.08127	0.02719	0.06242
	Radius + Ordinary Kriging	0.08173	0.02838	0.06292
	Statistical + Ordinary Kriging	0.08173	0.02774	0.06394
Pure gradient ascend	Score (64)	0.2773	0.06483	0.3748
	Score (128)	0.2037	0.05478	0.2806
	Score (256)	0.1201	0.04405	0.1714
Outlier detection w/	Score (64) + mean	0.2450	0.05471	0.3368
Scores + denoising	Score (128) + mean	0.1640	0.03994	0.2301
w/ mean interp.	Score (256) + mean	0.08348	0.02397	0.05759
Score (knn) + mean	Score (64) + mean + Score (64)	0.08790	0.02327	0.1043
+ gradient ascend	Score (128) + mean + Score (128)	0.08416	0.02208	0.09158
denoising using Scores	Score (256) + mean + Score (256)	0.07907	0.02049	0.07416



Conclusions

- We adapt a score-based point cloud denoising to MBES survey data
- We propose a training data generation pipeline that can be readily integrated into existing MBES data processing workflow
- For outlier detection, the score-based method outperforms all baselines
- For *denoising*, we combine score-based denoising and mean interpolation to handle extreme outliers

Code:

